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Canopy mortality has doubled in Europe’s
temperate forests over the last three decades
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Mortality is a key indicator of forest health, and increasing mortality can serve as bellwether

for the impacts of global change on forest ecosystems. Here we analyze trends in forest

canopy mortality between 1984 and 2016 over more than 30 Mill. ha of temperate forests in

Europe, based on a unique dataset of 24,000 visually interpreted spectral trajectories from

the Landsat archive. On average, 0.79% of the forest area was affected by natural or human-

induced mortality annually. Canopy mortality increased by+2.40% year–1, doubling the

forest area affected by mortality since 1984. Areas experiencing low-severity mortality

increased more strongly than areas affected by stand-replacing mortality events. Changes in

climate and land-use are likely causes of large-scale forest mortality increase. Our findings

reveal profound changes in recent forest dynamics with important implications for carbon

storage and biodiversity conservation, highlighting the importance of improved monitoring

of forest mortality.
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Forests ecosystems cover approximately 30% of the Earth’s
land surface1. They provide numerous ecological, economic,
and social benefits to humanity, including—but not limited

to—supplying timber, purifying water, and serving as places of
high recreational and spiritual value2. Forests also exert a strong
regulating function on global biogeochemical cycles and the cli-
mate system3, sequestering up to 60% of the anthropogenic car-
bon emissions in recent years4. Human well-being thus strongly
depends on the state and development of forest ecosystems.

A particularly important ecological process in this context is
forest mortality. Tree death is a natural demographic process in
forests, and dead and decaying trees are an integral part of
healthy forest ecosystems5. Standing and downed deadwood, for
instance, fosters biodiversity in forests, providing habitat to a
variety of species6. Also, the early-seral habitats emerging after
natural disturbance are diverse and species-rich ecosystems7,8.
However, elevated levels of tree death can substantially alter
ecosystem structure and functioning and impact the manifold
services forest ecosystems provide to humanity9,10. For example,
increased mortality can impact drinking water quality11 and
timber supply12. Moreover, elevated mortality decreases the car-
bon residence time in live biomass and soils13,14 and could thus
substantially reduce the carbon storage potential of forests15.
Hence, increasing mortality rates are an important indicator of
degrading forest health, which in turn could have strong detri-
mental effects on society16,17.

Increasing rates of tree death have been reported in recent years
for unmanaged18,19 as well as managed20 forest ecosystems. These
increases have been linked to changes in the climate system in
general, and specifically to a higher propensity of extreme climatic
events, such as droughts21,22. Moreover, growing evidence sug-
gests an amplification of natural disturbances from insects,
pathogens, and forest fires under climate change23,24. However,
the generally increasing levels of atmospheric humidity, CO2

concentration, and the lengthening of the growing seasons with
increasing temperatures could also alleviate mortality in many
regions25, as they facilitate primary productivity26,27. Further-
more, in many parts of the world tree harvesting by humans and
anthropogenic land-use change are the most important causes of
forest mortality28,29. Anthropogenic factors could either modulate
or override climate-induced changes in tree mortality30,31 or
render forests more susceptible to highly climate-sensitive natural
disturbances32,33. Legacies from past land use thus might sig-
nificantly contribute to observed changes in forest mortality. Yet,
recent developments in forest management toward “close-to-nat-
ure” silviculture34 and large-scale land abandonment35 might
dampen or even reverse impacts from land use on forest mortality.
Consequently, there is inconclusiveness about recent trends in
forest mortality for many forest ecosystems around the globe.

Large-scale changes in forest mortality remain difficult to
detect. Approaches based on dendroecology yield a long-term
perspective on forest mortality change36,37, but inference is
highly restricted in space and limited to investigations of remnant
old-growth forests. Another important source of information
are compilations of gray literature reports on past mortality
events33,38. These datasets can provide large spatial coverage, but
the quality of reporting frequently declines in earlier years, which
makes change detection uncertain33. A third information source
for detecting mortality change is forest inventory data, enabling
the analysis of mortality at the level of individual trees18,19.
However, systematic analyses of mortality change based on
inventory data are frequently hampered by widely varying forest
inventory systems between countries. This is particularly limiting
in areas with highly diverse administrative systems, as in Europe,
where consistent information on large-scale changes in forest
mortality is largely lacking.

We here present a consistent and comprehensive analysis of
forest mortality change across temperate forests in Europe. We
visually interpreted 24,000 satellite-derived spectral time series
spanning the period from 1984 to 2016 to quantify canopy
mortality change across a forest area of approximately 30 Mill. ha,
spanning six different countries in Europe (i.e., Austria, Czechia,
Germany, Poland, Slovakia, and Switzerland). We defined canopy
mortality rate as the percentage of forest area in which the
dominant tree layer experienced a discrete mortality event (i.e., a
disturbance from natural or anthropogenic causes) in a given
year, assessed at a grain of 30 m pixels. Our key objective was to
determine whether canopy mortality has increased across Eur-
ope’s temperate forests in recent years. We tested the null
hypothesis of no temporal trend for a 33-year time series of
annual canopy mortality rates. We further scrutinized the varia-
tion in temporal trends among countries to illuminate potential
drivers of mortality change: Based on previous findings of high
climate sensitivity of forest mortality20,22 and the large-scale
synchronization of forest development after World War II39,40,
we hypothesized forest mortality to change consistently across
countries. Alternatively, if changes in mortality were primarily
driven by local variation in forest management, considerably
varying trends between countries could be expected. To further
elucidate the role of regional-scale drivers for changing mortality,
we regressed mortality trends over important variables of climate
and forest structure at the country scale.

Subsequently, we investigated canopy mortality trends sepa-
rately for stand-replacing events (i.e., retaining no live trees at
the level of a 30 m pixel) and non-stand-replacing mortality
events (i.e., with residual live trees present after the event). If
mortality change is primarily caused by high severity natural
disturbances (i.e., cyclonal storm events) and clear-cut harvesting,
we would expect to see a stronger response of stand-replacing
mortality in our data. Alternatively, if mortality changes are
primarily the result of selective natural disturbances (e.g., host
tree-specific insect activity) and “close-to-nature” silviculture
(i.e., thinning, single tree and/or group selection management, see
Brang et al.34), the signal of non-stand-replacing mortality would
dominate the observed mortality trend.

Finally, we contextualized our results in a multi-proxy analysis
of mortality indicators. Theory on change detection in ecosystems
suggests that the inferential potential can be substantially
increased by jointly studying multiple indicators of change41.
Hence, in addition to remotely sensed canopy mortality changes,
we also analyzed trends in wood removal from official harvesting
reports, individual tree mortality estimates from the ICP forest
network22,42, and gray literature estimates of wind and bark
beetle disturbances33. As these additional datasets report on
specific aspects of forest mortality (e.g., wood removals, dis-
turbance) rather than providing a comprehensive account of all
mortality causes (as does our satellite-based estimate), a com-
parison across datasets is not suitable to validate our methodol-
ogy. It rather provides a multifaceted view of the changes in a
crucial ecosystem process and amends the remotely sensed
information presented here with regard to its causal interpreta-
tion. Based on theoretical considerations on the relationship of
canopy, volume, and individual tree mortality (see Supplementary
Note 1), in conjunction with increasing growing stock39 and
harvesting intensity43 across Europe, we expected a high corre-
lation between canopy mortality and wood extraction but a
negative trend in individual tree mortality.

Results
Canopy mortality rates and trends. Average canopy mortality
rates between 1984 and 2016 were 0.79 (0.75–0.83)% of the total

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07539-6

2 NATURE COMMUNICATIONS |          (2018) 9:4978 | DOI: 10.1038/s41467-018-07539-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


forest area per year (Fig. 1; For all estimates, we report the median
of the posterior distribution and the 95% credible interval).
Canopy mortality rates varied considerably among countries,
ranging from 0.53 (0.46–0.60)% year−1 in Poland to 1.17
(1.09–1.26)% year−1 in Austria and 1.17 (1.07–1.27)% year−1 in
Czechia (Supplementary Table 3). There was strong evidence for
an increase in canopy mortality rate (indicated as fractional
change α; see Methods) across temperate forests of Europe
over the past 33 years (Fig. 1; P(α > 0)= 1.00). Overall, canopy
mortality rates increased by 2.40 (1.39–3.40)% year−1. Strong
evidence for increasing canopy mortality was further found for
all individual countries (all P(α > 0) > 0.98) with the exception
of Germany, where trends were positive but weaker than in other
countries (P(α > 0)= 0.93). Canopy mortality increase varied
from 1.47 (−0.58 to 3.53)% year−1 in Germany to 4.14
(2.42–6.08)% year−1 in Slovakia (Supplementary Table 3).

Comparing mortality trends to climate and forest change. To
assess whether observed trends in canopy mortality are related
to spatio-temporal variation in forest structure and climate,
we compared mortality change in 5-year intervals to two climate
variables (mean annual temperature and total annual precipita-
tion) and two attributes of forest structure (growing stock per
hectare and median age). We found strong evidence (P(β1 > 0)
> 0.99, with β1 being the estimated effect) for a positive rela-
tionship of mortality with temperature and growing stock (Fig. 2).
Canopy mortality increased by 0.41 (0.35–0.47)% with a 1 °C
increase in mean annual temperature (R2= 0.38 [0.15–0.52]), and
by 0.66 (0.53–0.80)% with a 100m3 ha−1 increase in growing
stock (R2= 0.39 [0.14–0.49]). A weak positive relationship was
also found for total annual precipitation (R2= 0.17 [0.00–0.39]),
while variation in median age was not related to mortality
changes (R2= 0.05 [0.00–0.29]).

Separating stand-replacing and non-stand-replacing events.
Temporal trends differed significantly between stand-replacing
and non-stand-replacing mortality (Fig. 3). Overall, the observed
changes in canopy mortality from 1984 to 2016 were strongly
driven by increases in non-stand-replacing mortality. Particularly
in Czechia and Germany, increases were caused by elevated

levels of non-stand-replacing mortality, with a simultaneous
tendency of decreasing stand-replacing mortality events. An
opposite pattern was observed for Poland, Austria, and Slovakia,
which all showed increases in both stand-replacing and non-
stand-replacing mortality.

Multi-proxy analysis of forest mortality. Comparing satellite-
based canopy mortality estimates to other proxies of forest
mortality revealed a multifaceted perspective on mortality change
in temperate forests of Europe. Remotely sensed canopy mortality
rates were strongly correlated with wood removal statistics
(r= 0.75 [0.65–0.84]; Fig. 4b), with wood removal rates also
increasing across temperate forests of Europe (1.4 [0.57–2.29]%
year−1; Fig. 4a and Supplementary Table 3). In contrast, area-
based forest mortality was negatively correlated to estimates of
individual tree mortality (r=−0.33 [−0.57 to −0.06]; Fig. 4b),
with the average rate of individual tree mortality showing a
weak and uncertain decrease by −1.45 (−4.31 to 1.36)% year−1

over the observation period (Supplementary Table 3). Comparing
area-based mortality time series to gray literature data on timber
disturbed, we found a moderate positive correlation for bark
beetles (r= 0.27 [0.12–0.42]; Fig. 4b), whereas the relationship
to wind disturbances was weak (r= 0.16 [0.01–0.31]; Fig. 4b).
Nonetheless, the three large-scale wind storm events in 1990,
1999, and 2007 are also evident in our remotely sensed canopy
mortality estimates (Fig. 4a).

Discussion
We here present a consistent (across space and time) and com-
prehensive (i.e., capturing the diverse set of prevailing causes
of mortality) assessment of canopy mortality across >30 Mill.
ha of temperate forest in Europe. We found that on average
0.79% of the forest area—approximately 240,000 ha—were
affected by canopy mortality annually. Furthermore, canopy
mortality increased by 2.40% year−1, resulting in a doubling of
the forest area affected by canopy mortality between 1984 and
2016. Our null hypothesis of no mortality change over time can
thus be rejected with a high level of confidence (P(α > 0)= 1.00).

The increase in canopy mortality was largely consistent across
countries, despite their high variability in forest types and
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Fig. 1 Annual rates of canopy mortality in temperate forests of Europe. Estimates were derived from satellite time series interpretation and are reported in
percentage of the forest area experiencing canopy mortality. Solid lines indicate the median of the posterior probability distribution. Ribbons and dashed
lines indicate the 95% credible interval of the annual estimates and the trend line, respectively
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management systems44. This suggests that broader-scale pro-
cesses such as climate change and forest recovery from past land
use—i.e. drivers affecting ecosystems dynamics across national
borders and at large spatial scales—are important factors

contributing to the observed increases in forest mortality. Our
finding of a consistent significant relationship of mortality with
increasing temperatures and growing stocks across all countries
supports this hypothesis. Both climate change (i.e., increasing
mean temperature) and forest recovery from past land use (i.e.,
increasing growing stocks) are, for instance, important drivers
of the prevailing natural disturbance regime in temperate
Europe36,45.

While increasing natural disturbances likely contributed to
the observed mortality trend38, land-use change and specifically
intensified tree harvesting—including salvage logging of naturally
disturbed areas—is the most important agent of canopy mortality
in Europe’s temperate forests. This interpretation is supported
by a strong correlation of observed canopy mortality trends
with reported wood removals (Fig. 4), suggesting that trees are
removed for human usage from most of the areas experiencing
mortality. Our results indicate that increased extraction is hap-
pening primarily in the form of non-stand-replacing mortality
(Fig. 3). This suggests increased thinning activity and a transition
from past clear-cut systems toward “close-to-nature” silvi-
culture34 and retention forestry46 in the temperate forests of
Europe. Such an interpretation is also consistent with the weak
relationship between forest age and mortality found here (Fig. 2),
as these new silvicultural systems move away from simple age-
based approaches of stand rotation.

Trends in mortality across our multi-proxy analysis were
divergent but generally conformed to theoretical expectations
(see Supplementary Note 1), with inventory-based individual tree
mortality decreasing over past decades, whereas canopy mortality
and official wood removal statistics indicating increasing trends.
Our multi-proxy analysis thus suggests that larger forest areas
and/or areas of high growing stocks are particularly affected by
mortality, with fewer (but bigger) trees dying in these forests.
This pattern is consistent with changes in the structure and
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demography of temperate forests in Europe39,40 and with
empirical relationships between tree size and stem mortality47.
Moreover, it has important implications for the carbon cycling in
Europe’s forests: As big trees are crucial for the forest carbon
budget and carbon residence times48, our analysis suggests that
the observed reduction in the sink strength of Europe’s forests49

might indeed result from increasing mortality and decreasing
carbon residence times38. To better quantify the future carbon
stocks in Europe’s forests, it is thus of paramount importance to
improve the representation of mortality processes in simulation
models used for policy and decision support50,51.

In addition to carbon cycle effects, intensifying forest mortality
could benefit biodiversity by increasing forest deadwood stocks
(which are currently low in the temperate forests of Europe52).
However, as the increased canopy mortality observed in this
study is strongly driven by intensified wood extraction (Fig. 4),
deadwood stocks are increasing at a much slower rate than the
increase in mortality reported here would suggest52. The potential
benefits of increasing canopy openness for biodiversity7,53 might
thus be offset by simultaneously increasing wood extraction
rates. Beyond the impacts on carbon cycling and biodiversity, the
drastic mortality changes reported here impact a wide variety of
other ecosystem services9,10.

Methodologically, our results highlight that a comprehensive
analysis of forest mortality change requires a multi-proxy infer-
ence across a range of spatial scales16,54. The divergent trends in
forest mortality between proxies uncovered here (Fig. 4) suggest
that the varying responses of forest mortality to climate change
reported in the literature might simply be the result of a focus
on different response variables. More generally, considering
only a single proxy of forest mortality can result in misleading
conclusions with respect to underlying drivers of change55. We
here show that remote sensing holds great potential for analyzing
mortality across large areas characterized by heterogeneous

administrative entities. We thus suggest that remote sensing
should be at the core of a future forest health monitoring system
that captures tree death consistently and comprehensively at
the global scale (see also refs 1,54). Notwithstanding the power
of emerging remote-sensing datasets, limitations remain. Our
analysis, for instance, only pertains to tree mortality in the
canopy layer, underlining the need to complement remote-
sensing information with terrestrial data on forest health.
Canopy-penetrating, active satellite systems might allow deeper
insights into the structural changes associated with canopy
mortality56. Yet, those systems are currently limited to the ana-
lysis of recent mortality events, precluding the quantification of
temporal trends.

Europe’s forest ecosystems are changing, and mortality is likely
to be among the ecosystem processes changing most drastically.
A doubling of canopy mortality within 33 years—as observed
here—constitutes a substantial change in ecosystem dynamics
and has the potential to cancel out simultaneously observed
increases in tree growth26,57. The drastic changes in forest
mortality documented here also highlight the importance of
continuously monitoring ecosystem change and utilize this
information to foster forest resilience in policy and management
decisions58.

Methods
Study area. Our analysis extends over six countries in Europe (Austria, Czechia,
Germany, Poland, Slovakia, and Switzerland), covering a total land area of nearly
93 Mill. ha and a total forest area of approximately 30 Mill. ha. These particular
countries were selected because they represent the variability in the temperate
forest ecosystems of Europe well (see Supplementary Table 1), cover major bio-
physical gradients (lowland to alpine and maritime to continental conditions),
and are characterized by a wide range of forest management systems.

Landsat data. We downloaded and processed all Landsat data spanning the period
between 1984 and 2016 from the United States Geological Survey (USGS) and the
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European Space Agency (ESA) archives. Data from the USGS archive were ready-
to-use surface reflectance products, while images from the ESA archive needed to
be corrected to surface reflectance using LEDAPS59. Further, we spatially matched
images from the ESA archive to images from the USGS archive using algorithms
proposed in Gao et al.60.

Sampling design. We applied a random sampling design to select pixels for visual
interpretation of canopy mortality. We decided for a random sampling—i.e.,
sampling across forest and non-forest areas—as no reliable forest cover map was
available for stratification in the beginning of our study period (1984). We sub-
sequently stratified sampling by country (with equal number of samples per
country) in order to yield similar precision among countries and to make estimates
comparable to other datasets available at the country scale. The number of samples
per country was determined to balance data collection effort and precision. After
testing varying sample sizes using an existing stand-replacing forest disturbances
map for 2000–20121, we set the final sample size to 4000 plots per country,
resulting in 24,000 samples in total.

Interpretation and response design. For interpreting Landsat time series with
respect to changes in forest canopy, we followed the TimeSync approach described
in Cohen et al.61. TimeSync allows a human interpreter to subdivide yearly Landsat
time series into linear segments of stable, declining, or increasing spectral trends
(Supplementary Figure 1). With the aid of Landsat images and high-resolution
imagery available in Google Earth, the interpreter can determine whether spectral
changes correspond to forest canopy changes or whether spectral changes were
caused by other artifacts, such as phenological variation or cloud cover. Visual
Landsat interpretation has been shown to excel at forest change detection relative
to automatic algorithms62. It furthermore significantly reduces commission error
for non-stand-replacing changes and allows the detection of multiple change events
within one time series.

To facilitate interpretation, the six spectral bands of Landsat were transformed
into Tasseled Cap space63, which allows for an assessment of vegetation brightness,
greenness, and wetness in RBG (red, blue, green) color space. As a first step, the
interpreter assessed the land use of the pixel. Definitions of the land uses
considered are given in Supplementary Table 2. For all pixels identified as forest,
the interpreter subsequently assessed whether and when there has been a change
(or multiple changes) in canopy cover over the study period. This was done by
inspecting the spectral trajectory for breaks or gradual changes (see Supplementary
Figure 1 for an example), while simultaneously inspecting Landsat images and
high-resolution imagery (if available). If the spectral change was attributed to a
change in canopy cover, the interpreter selected the start and end points of a
change period (subsequently referred to as vertices), thus subdividing the time
series into linear segments of similar behavior. For each segment, the change
process was identified (stable, canopy mortality, regrowth; see Supplementary
Table 2). In general, a decrease in Tasseled Cap Wetness is associated with a
decrease in canopy cover due to mortality, but the interpreter also was able to
assess simultaneous changes in other spectral bands to aid attribution. Finally,
land use and land cover was set for the vertices delimiting each segment. We did
not separate specific agents of canopy cover change, as no historic high-resolution
imagery was available throughout all countries, potentially introducing a significant
attribution bias in earlier years. However, based on the land cover information
recorded for each vertex, we distinguished stand-replacing mortality events (i.e.,
resulting in a non-treed land cover) from non-stand-replacing mortality events
(i.e., resulting in a treed land cover). Estimating the percentage of forest cover
at the level of a Landsat pixel is inherently difficult. We here used high-resolution
imagery to calibrate interpreters in making decisions on whether a mortality event
results in a complete loss of forest cover (stand-replacing mortality) or whether
residual live trees remained (non-stand-replacing mortality). We subsequently
evaluated our classification of stand-replacing and non-stand-replacing mortality
events by testing for differences in relative residual forest cover between both
classes at 280 plot locations selected from an independent dataset (see
Supplementary Methods 1 for details).

Statistical estimation of mortality rates and trends. We estimated annual
mortality rates using a hierarchical binomial model with logit link function. The
full model is described in detail in Supplementary Methods 2. In essence, the model
estimates annual mortality rates, with each year’s rate being assumed to emerge
from the same underlying population. The mean of the binomial distribution is
modeled as a linear model with time as predictor, thus estimating the fractional
change (α) in mortality rate over time. We developed individual models for each
country and sampled joint posterior distributions of all parameters using Monte
Carlo Markov Chain methods as implemented in Stan (version 2.17.0)64. Finally, a
mean estimate across all countries was obtained by calculating the weighted mean
of the posterior distributions of each country estimate. Weights were calculated
proportional to the area of each country, accounting for the stratified sampling
design implemented in the TimeSync analysis. We finally summarized all posterior
distributions with regard to their median and 95% credible interval (2.5% and
97.5% quantile of the posterior) and calculated the probability of a positive trend
(P(α > 0)).

Relating mortality trends to climate and forest change. To elucidate the
relationship of climate and forest structure with changing forest mortality, we
regressed forest mortality trends over four covariates, including changes in climate
(mean annual temperature and total annual precipitation) as well as forest
structure (median age and growing stock density). Variable selection was based
on previous analyses on drivers of forest mortality in Europe45. Mean annual
temperature and total annual precipitation time series were obtained from 2962
weather stations through the European Climate Assessment and Data network
(http://www.ecad.eu/) and were aggregated to average annual country estimates
(Supplementary Figure 2). Forest structural data were available from Seidl et al.38

and Vilén et al.40 and included national estimates of total growing stock and
median age at 5-year intervals (1985–2015; Supplementary Figure 3).

To temporally match both datasets as well as to focus the analysis on longer-
term changes instead of year-to-year fluctuation, we averaged all data sets—
including the annual mortality rates—to 5-year intervals, with the outer intervals
including the first (1984) and last (2015) years (i.e., 1984–1989, 1990–1994,
1995–1999, 2000–2004, 2005–2009, 2010–2015). We subsequently regressed
within-country mortality trends over trends in each covariate using Bayesian
hierarchical log-linear models implemented in Stan via the rstanarm package
(version 2.17.4)65. The model estimates the direction and strength of relationship
between trends in mortality rates and trends in each covariate within each country,
while accounting for random variation in intercept and slope between countries.
We chose either a random intercept or a random intercept and random slope
model based on the leave-one-out predictive performance measure implemented in
the loo package (version 2.0.0)66. For further details on the modeling framework,
we refer the reader to Supplementary Methods 3.

Multi-proxy analysis of mortality change. We compiled several additional
proxies of forest mortality in order to facilitate a multi-proxy analysis of mortality
change. We acquired data on the annual total round-wood volume harvested within
each country from the FAOSTATS forest database (http://www.fao.org/faostat/).
This dataset contains all wood removed from forests, including salvage logging in
response to natural disturbances, and is reported by each country through annual
surveys. We further obtained estimates of natural disturbances by wind and bark
beetles covering the years 1984–2011 from Schelhaas et al.33 and Seidl et al.38. Those
estimates are based on gray literature reports of disturbance events in the region.
Trends in wood removal and natural disturbances were estimated using Beta
regression with a logit link function, implemented in Stan via the brms package
(version 2.5.0)67. Trend estimates are thus comparable to our Landsat-based forest
mortality change estimate. A tree-based analysis of forest mortality change was
derived based on inventory data from the ICP network (http://icp-forests.net).
Within the ICP network, forest health surveys are conducted annually at a 16 × 16
km2 grid across the European continent42. The surveys were initiated in 1985, but
starting dates vary across countries (see Supplementary Figure 4). At each plot, the
defoliation status is assessed for at least 20 canopy trees per plot (no suppressed or
intermediate trees; tree height >0.6m). For our analysis, which focused on mortality
rather than defoliation, we followed Neumann et al.22 in assuming a tree to be dead
if defoliation was 100% and the tree was no longer included in the assessment in the
following year. We analyzed data of 77,592 trees across 2423 plots for the years
1990–2010 (the only period where data from all six countries were available; see
Supplementary Figure 4), amounting to a total of 785,169 observations (trees ×
years). Individual tree mortality rates were calculated using the same model as for
the Landsat time series analysis (see previous section). Hence, we estimated annual
individual tree mortality rates and fractional changes in mean mortality rates over
time for each country as well as jointly for all plots across the six countries.

Code availability. The model used for estimating annual rates and trends in
mortality is available as R package under https://zenodo.org/record/1221340
[https://doi.org/10.5281/zenodo.1221339]. The complete analysis code is available
under https://zenodo.org/record/1453351 [https://doi.org/10.5281/
zenodo.1453350].

Data availability
All data used in this study are deposited under https://zenodo.org/record/1453351
[https://doi.org/10.5281/zenodo.1453350]. A reporting summary for this article is
available as a Supplementary Information file.
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